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Abstract-A near-wall two-equation model for turbulent heat fluxes is derived from the temperature 
variance and its dissipation-rate equations and the assumption of gradient transport. Only incompressible 
flows with non-buoyant heat transfer are considered. The near-wall asymptotics of each term in the exact 
equations are examined and used to derive near-wall correction functions that render the modeled equations 
consistent with these behavior. Thus modeled, the equations are used to calculate fully-developed pipe and 
channel flows with heat transfer. It is found that the proposed two-equation model yields asymptotically 
correct near-wall behavior for the normal heat flux, the temperature variance and its near-wall budget and 
correct limiting wall values for these properties compared to direct simulation data and measurements 

obtained under different wall boundary conditions. 

INTRODUCTION 

IN WE past, turbulent flow cakuIations were per- 
formed using wall functions to describe the flow 
between the first grid point and the wall. This was 
necessary because the modeled equations were valid 
for high-Reynolds-number flows only and, therefore, 
could not be applied at and near a wall. The wall 
functions were derived assuming Couette flow and 
local equilibrium turbulence. These assumptions were 
later found to be not quite valid even for simple wall 
shear flows with and without heat transfer, such as 
fully-developed channel and pipe flows and flat plate 
boundary-layer flows [l-lo]. 

The need to modify wall functions and to render 
the modeled turbulence equations valid at and near a 
wall was recognized long before direct simulation data 
on channel flows [l-6] were available. This recog- 
nition led to the development of near-wall or low- 
Reynolds-number models for two-equation and 
Reynolds-stress closures. Near-wall corrections were 
proposed and they were usually in the form of extra 
terms added to the turbulent kinetic energy and its 
dissipation rate equations fl 1, 121 and to the Reyn- 
olds-stress equation [13, 141. These extra terms were 
derived to render the modeled equations valid at the 
wall and little consideration was given to ensure cor- 
rect near-wall asymptotic behavior as in the exact 
equations. With the availability of direct simulation 
data [l-3], turbulence statistics near a wall and their 
limiting wall values can be determined accurately. As 
a result, most of the added functions were found to 
give incorrect turbulence properties near a wall [ 15, 
161. In particular, they failed to yield correct pre- 

t Presently at CFD Research Corp., Huntsville, AL 35802, 
U.S.A. 

dictions of the limiting values of the turbulence stat- 
istics at the wall and were not able to give an asymp- 
totic near-wall behavior similar to that given by direct 
numerical simulation. Recent near-wall proposals 
remedied some of these drawbacks. Consequently, 
fairly correct asymptotic near-wall modifications for 
two-equation [ 15, 171 and Reynolds-stress models 
[16, 18-201 am now available. These recent near-wall 
models have been analysed and compared with direct 
simulation data. Some of them are found to yield 
results that are in good agreement with simulation 
data at fairly low Reynolds numbers and with 
measurements at relatively high Reynolds numbers 
[lS, 161. 

In heat transfer modeling, especially incompressible 
non-buoyant flows, the assumption of a constant tur- 
bulent Prandtl number is usually invoked. In other 
words, turbulent heat fluxes were directly determined 
from turbulent momentum fluxes, and there was no 
need to solve equations that governed the transport of 
heat fluxes or temperature variance and its dissipation 
rate depending on whether the assumption of gradient 
transport was made. It was further argued that better 
predictions of near-wall turbuIent heat fluxes and their 
asymptotic behavior could be achieved by improving 
near-wall models for the velocity field [21, 221. 
However, recent shear flow measurements [7-IO] and 
direct simulation data [4-6] showed that an analogy 
between heat and momentum transfer as represented 
by a constant turbulent Prandtl number could not 
adequately reflect the physical phenomenon of heat 
transport, even for simple wall shear flows. Fur- 
thermore, these data showed that the turbulent 
Prandtl number, instead of being constant, increased 
towards a wall. Its value at the wall was determined 
to be about I .I and far exceeded the 0.7-0.9 value 
normally assumed for wall shear flow calculations. In 
other words, if turbulent heat transfer were to be 
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NOMENCLATURE 

A+ model constant, taken to be 30 
a,, hi. c,, (1, random functions of time and 

the x and z coordinates 
a,,, , h,,,. coefficients in the expansion for UC + 

in the near-wall region 
Q, b, coefficients in the expansion for Fz 

in the near-wall region 

&I 3 b ,rB coefficients in the expansion for uO+ 
in the near-wall region 

Ql,HI r+ b coefficients in the expansion for aQ+ 
in the near-wall region 

% > h 0 coefficients in the expansion for E: 

in the near-wall region 
A, B, C, D coefficients in the expansion for 

O* and .a(, 
model constant, taken to be 1.5 
model constant, taken to be 0.4 
model constant, taken to be 0.11 
model constant, taken to be 0.15 
model constant, taken to be 1.35 
model constant, taken to be I .8 
specific heat at constant pressure 
model constant, taken to be 0.1 
model constant, taken to be I .8 
model constant, taken to be zero 
model constant, taken to be 0.72 
model constant, taken to be 2.2 
model constant, taken to be 0.8 
model constant, taken to bc 0.1 I 
model constant, taken to be 0.1 I 
model constant, taken to be 0.11 
molecular diffusion term in temperature 

variance equation 
molecular diffusion term in sH equation 
turbulent diffusion term in si) equation 
near-wall damping function for 
Reynolds-stress equation 
near-wall damping function for t: 
equation 
near-wall damping function for c,, 
equation 
near-wall damping function for turbulent 
heat diffusivity 
near-wall damping function for E 
equation 
channel half width 
turbulent kinetic energy 
unit normal vector measured positive 
outward from wall 
production due to mean shear, 
-zr,u,(?C’,~i.Y,) 
production due to mean temperature. 
- U,, O(?O/?.u,) 
production term in the Ed, equation 
production term due to mean 
temperature gradient in the x-direction 
molecular Prandtl number 
turbulent Prandtl number 
wall heat flux 

R time scale ratio 
RC Reynolds number based on mean bulk 

velocity, U,,(2h)/v 

R?, Reynolds number based on the wall 
friction velocity, u,h/v 

Ret turbulent Reynolds number, k’ivc 

s,, source term in temperature variance and 
its dissipation rate equations 

t time 

Ii,, mean bulk velocity 
I/, V mean velocity components along x and 

_r, respectively 

U ith component of the mean velocity 
LJ+ normalized mean U velocity, U/u, 

Ll, ith component of the fluctuating velocity 

u, L’, M’ fluctuating velocity components 
along x, y and z, respectively 

UT friction velocity, (r,/p) ‘, ’ 
L10+ normalized turbulent shear stress, W/U: 
I’(?+ normalized turbulent heat flux, z~O/u,@, 

u0+ normalized turbulent heat flux, ut)/u,O, 

.y, ith component of the coordinate 
s, I’, z coordinates along stream, normal 

and transverse directions 

I’+ normalized 1’ coordinate, yu,/v. 

Greek symbols 
thermal diffusivity, K, ipC,, 
turbulent heat diffusivity 
model constant, taken to be 0.45 
solenoidal dissipation rate of k 
dissipation rate of temperature variance 
dissipation rate, i: - 2v(Q’k/iv) 2 
dissipation rate. c,,- x(?$‘/~r)’ 
dissipation rate. t: - 2vk/,r’ 

dissipation rate, E,,-&I’/_$ 

normalized dissipation rate, EY/U: 
normalized dissipation rate. sBv/u~OZ 

mean temperature 
friction temperature, q,/pC,u, 

normalized mean temperature, O/O, 

fluctuating temperature 
temperature variance 
normalized rms temperature variance, 
,.~(F/‘O. 

thermal conductivity 
von Karman constant for the velocity 

profile 
von Karman constant for the 
temperature profile 
fluid kinematic viscosity 
near-wall correction to 8 equation 
near-wall correction to E@ equation 
instantaneous fluid density 
dissipation term in E” equation 
wall shear stress. 

Overbars 
time-averaged quantities. 
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calculated correctly in non-buoyant wall shear flows, 

the constant turbulent Prandtl number assumption 
has to be relaxed. 

For incompressible non-buoyant flows, the exact 
mean momentum equations are decoupled from the 
mean energy equation and the exact transport equa- 
tions for the turbulent heat fluxes do not contain a 
temperature variance term. Therefore, they can be 
solved without knowledge of the temperature variance 
if a second-order closure for the heat fluxes [23] is 
used. In other words, the mean temperature dis- 
tributions can be calculated independent of the tem- 
perature variance and its dissipation rate. Further- 
more, the velocity field is not affected by the 
temperature field and momentum fluxes can be 
modeled independent of heat fluxes. Consequently, 
two independent approaches can be proposed for the 
modeling of near-wall heat transport in such flows. 
One approach is to invoke gradient transport for the 
heat fluxes and then relate them to temperature vari- 
ance and its dissipation rate in a manner similar to that 
used to define turbulent eddy viscosity. Therefore, 
this necessitates near-wall modeling of temperature 
variance and its dissipation rate equations. Such a 
model has been proposed by Nagano and Kim [Zl] 
and their predictions of mean flow properties are in 
good agreement with measurements. However, in 
their model, they assumed the dissipation rate of tem- 
perature variance to be zero at the wall. This assump- 
tion is not consistent with measurements and direct 
simulation data [4-6, IO]. 

Another approach is to model and solve the heat 
flux equations, thus avoiding the assumption of a 
vanishing dissipation rate of the temperature variance 
at the wali. An asymptotically correct heat flux model 
has been derived by Lai and So 1231 using the 
approach proposed in ref. [20], Consequently, the 
modeled heat flux equations yield an asymptotic 
behavior correct to first order compared to the exact 
equations. The calculated normal heat flux is in excel- 
lent agreement with measurements [8] and the tur- 
bulent Prandtl number is predicted to vary across the 
pipe and to increase as the wall is approached. On the 
other hand, for buoyant flows, the transport equa- 
tions for the heat fluxes contain a temperature vari- 
ance term. In this case, equations for the temperature 
variance and its dissipation rate need to be solved. 
even if a second-order ciosure for the heat fluxes is 
used. Therefore, if near-wall heat transfer were to be 
calculated accurately for non-buoyant and buoyant 
flows, an asymptotically correct near-wall model has 
to be derived for the temperature variance and its 
dissipation rate equations. 

The present objective is to derive and validate an 
asymptotically correct near-wall two-equation model 
for heat transport based on the temperature variance 
and its dissipation rate equations. This is accom- 
plished by analyzing the near-wall behavior of the 
terms in the exact equations. A conventional high- 
Reynolds-number model for these equations is chosen 

and its behavior near a wall is examined. Near-wall 
modifications to the high-Reynolds-number models 
are proposed to remedy the differences between the 
exact and modeled behavior of the terms in the near- 
wall region. Obviously, a complete remedy cannot be 
expected. Instead, the modifications are derived to 
match the behavior up to first order of the coordinate 
normal to the wall. 

For the type of flow under consideration, the vel- 
ocity field is not influenced by the temperature field. 
Theoretically, therefore, any closure model for the 
momentum fluxes can be used to calculate the velocity 
field. In order to ensure accuracy and reliability in the 
calculated velocity field, it is prudent to select a higher- 
order model for the momentum fluxes. Therefore. 
a second-order near-wall model for the momentum 
fluxes and the proposed two-equation model for heat 
fluxes is used to calculate fully-developed pipe and 
channel flows with different wall thermal boundary 
conditions. The calculations arc validated against 
measurements and direct simulation data and the 
results are also compared with the model predictions 
of refs. [2 I. 23). 

TEMPERATURE VARIANCE AND ITS 

DISSIPATION RATE EQUATIONS 

If temperature variance is denoted by $T and its 
dissipation rate E* is defined as 

then the exact equations governing the transport of 
p and E” are given by [24] 

(2) 

In equations (2) and (3), S, is a source term involving 
fluctuating viscous stresses and fluctuating velocity 
gradients. 

It is clear from the exact transport equations (2) 
and (3) that the relative importance of the different 
terms in the p and E@ budgets is similar to that of the 
corresponding terms in the equations governing the 
transport of turbulent kinetic energy (k) and its dis- 
sipation rate (6). Several experimental studies have 
shown that close similarity does exist between the 
budgets of k and E and @ and E@. For example, the 
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boundary-layer measurements of Krishnamoorthy 
and Antonia f9, lo] indicated that the thermal and 
velocity fields resemble each other. Particularly, the 
measurements of sH have enabled the temperature dis- 
sipation time scale to be estimated in the near-wall 
region and approximately the same distribution as the 
velocity dissipation time scale was obtained. In view 
of this and the assumption of incompressible flow, the 
last term in (2) and (3) is small compared to other 
terms and can be neglected. Therefore, in the follow- 
ing: their modeling need not be discussed. 

Most proposals for turbulent diffusion modeling in 
the O- equation have adopted a gradient-type rep- 
resentation for zQ2. Consistent with conventional 
approaches and with diffusion modeling of the vel- 
ocity field [20], the following model is suggested, or 

The diffusion coefficient i$: is chosen to be 0.11 as 
recommended by Launder 1241. This proposal can be 
adopted for both low- and high-Reynolds-number 
flows, the reason being that an asymptotic analysis of 
(2) reveals that turbulent diffusion of 0’ is at most 
of order y3 near a wall and, therefore, is negligible 
compared to dissipation and molecular diffusion of 
0’. Furthermore, experimental measurements 19, IO] 
support this assumption. Also, since the modeled term 
(4) is of higher order, it has little or no effect on the 
near-wall analysis of (2). 

A more important term requiring approximation in 
the m’ equation is the dissipation rate Q. In most 
previous studies, this dissipation rate is algebraically 
related to O2 through the use of a time-scale ratio R 
124,251 that has a range of 0.5-0.8 depending on the 
flow problem considered. Unfortunately, measure- 
ments of the decay of temperatl~re and velocity lluc- 
tuations behind a heated grid suggest that the time- 
scale ratio has a rather wide scatter and is not 
sufficiently constant to serve as a general method for 
the determination of c,,. The alternative is to deter- 
mine E,, from its own transport equation, which is 
given by (3). 

The problem of closing (3) is much more difficult 
than that of the E equation because there are more 
time and generation-rate scales in the F(, equation. For 
high-Reynolds-number flows, dimensional analysis 
suggests that only the sixth and seventh terms on the 
right hand side of (3) are important. Several proposals 
have been made to close the .Q equation for high- 
Reynolds-number flows [2 I. 26291. Among them, the 
proposal of Jones and Musonge [26] takes the form : 

DC” 

where 

(6) 

(7) 

Note that in the modeling of PC0 and I;,,,, terms involv- 
ing the generation and destruction of fine scale tur- 
bulence interactions, both thermal and velocity time 
scales are used. However, in the second-order closures 
of Newman rf al. 1271 and Elghobashi and Launder 
[ZS], only the thermal time scale and the thermal pro- 
duction rate are used to model P,,. On the other hand. 
Nagano and Kim 1211 propose to use both production 
rates to model ~~~0, or 

P,:,, = c;, ;; P,, + C‘,& 
F 
k’ 

It is worth noting that recently, Yoshizawa [29] was 
able to derive the same form as (7) and (8) for the 
models for Z,,, and P,, using statistical results obtained 
from a two-scale direct-interaction approximation. 
Even the model constants predicted by their direct- 
interaction approximation are approximately the 
same as those proposed by Newman et al. 1271. Since it 
is generally agreed that both temperature and velocity 
time scales and production rates affect .Q, it would 
seem that a more general form for P,,, would be 

where the values of the model constants &,--Cd, are 
to be discussed later. 

Finally, to close the F~, equation, the turbulent 
diffusion term, @,,, also needs modeling. It is pro- 
posed to model this term using a gradient-type 
approximation consistent with turbulent diffusion 
modeling in other equations. The proposed model is 

Again, the model is valid for both low- and high- 
Reynolds-number flows. Therefore, the modeled high- 
Reynolds-number O2 and Ed equations can be sum- 
marized as 

NEAR-WALL TWO-EQUATION MODEL 

The modeled equations (11) and (12) are quite 
general and include most proposals put forward by 
other researchers. Therefore, they could serve as the 
base model for heat transfer problems. However, these 
equations are not applicable at and near a wall. In 
order to render them valid in the near-wall region, an 
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extension of the above equations to low-Reynolds- 
number flows is required. This can be achieved in a 

manner analogous to the near-wall modeling of the k 

and E equations [ 151. First of all, the viscous diffusion 
terms that appeared in (2) and (3) have to be restored 
to (11) and (12). For incompressible flows, if the 

assumptions of analyticity for the turbulent flue- 
tuations and vanishing temperature fluctuation at the 

wall are invoked. near-wall Taylor expansions of u, 
and 0 in terms of J: can be written as [16,23] : 

u = cr,I’+N?r2+“‘, I’ = /I,J,’ + ., (13a, b) 

M’= c,y+cJ+..., H = d,Jr+d&+..‘. 

(13c,d) 

While the assumption of analyticity is well accepted, 
(13d) is correct only for the isothermal wall boundary 

condition. Its extension to adiabatic and constant wall 

heat flux boundary conditions represents a good ap- 
proximation of the fluctuating temperature behavior 
and is supported by the analysis of Polyakov [30]. 
Therefore, with the help of (13) and the addition of the 

viscous diffusion term to (1 I), it can be shown that 
the modeled 0’ equation is in balance to the lowest 
order of y in the near-wall region and the balance 
is provided by viscous diffusion and viscous dissipa- 

tion. This can be verified by making use of the defini- 
tion of F(, given by (3). k = t&,/2 and E = v(du,/ix,)‘. 
In view of this, the O2 equation, just like its counter- 

part k equation, needs no further modifications for 
near-wall flows. 

A similar near-wall asymptotic analysis of the exact 

and modeled Ed equation shows that molecular 
diffusion reaches a finite value at the wall and is domi- 
nant in the near-wall region. Near-wall analysis of 
other terms in (12) reveals that the generation terms 
can be of order y” depending on the thermal wall 
boundary condition assumed, while the modeled de- 
struction terms become infinite as a wall is approached 
because F and c0 are finite and k and 8’ are zero at the 
wall. The modeled behavior is contrary to that of the 
exact terms. However, this singular behavior can be 

removed by replacing E and E” in the velocity and 
thermal time scales in (7) by d and & Thus modified, 
the near-wall behavior of the modeled c0 equation 

has the property that molecular diffusion becomes 
dominant when a wall is approached, while the 
destruction of c(, goes to zero at the wall. This behavior 
is contrary to the exact behavior dictated by (3) and 
is analogous to the behavior of the high-Reynolds- 
number form of the E equation. Therefore, further 
modifications are required to effect balance of the 
modeled Ed equation in the near-wall region. 

In order to achieve a proper balance of the modeled 

c,, equation in the near-wall region, a starting point of 
the analysis is the exact c,, equation. However, since 
the terms of the exact equation are not modeled on a 
one-to-one correspondence basis, an alternative con- 
dition has to bc imposed to effect proper balance 
in the near-wall region. One such condition is that 

proposed by Shima [IS] for the analysis of the E equa- 
tion. The present study extends this condition to ana- 

lyse the E# equation so that proper near-wall balance 
of the modeled equation is achieved. This can be 
accomplished by expanding the fluctuating quantities 
according to (13). Using the definitions of Cl2 and E,, 
and the substitution of (13), the following is obtained : 

O’= 2Ay*+2BJJ+CJ*J+“. 

c0 = c((2A+4L3y+Dy2+...) (14a. b) 

where A, B, C and D are related to the time average 
of the coefficients d,, d2,. . Further analysis of the 

exact 0’ equation at a wall yields 

Following the proposal of Shima [ 181, which is formu- 

lated for the E equation, a transport equation for the 
right-hand side of (15) can be derived and then 
approximated for near-wall flows. In order that the 
result is applicable for both constant wall temperature 
and constant wall heat flux boundary conditions, the 

following equation is obtained : 

Another equation for 2(?+,/3t) can also be derived 
from the modeled F,, equation (12) with the molecular 
diffusion term restored and a near-wall correcting 
function implemented to account for low Re effect. 
These two equations should possess the same asymp- 
totic behavior near a wall. Therefore, this constraint 
can be used to determine the near-wall correcting 
function, I&,,. 

Since a general analysis is difficult, the following 
analysis is restricted to the case where the averaged 
quantities are functions of y and t only. The near-wall 
asymptotic behavior of the right-hand side of (16) can 
be obtained by making use of (13) and (14). After 
much algebra, the result is [-4aZD+24aZC- 

4w,d, (~?O/c?.u)]. If 2(&,,/?t) derived from the modi- 
fied modeled E,, equation is to give the same result to 
the lowest order of y, then it can be shown that the 
extra term <,,, thus deduced can be written as 

The appearance of Pz in (17) is a consequence of the 
constant wall heat flux boundary condition, where 
%)/ax is constant. The function fW,EH is introduced to 
ensure that away from the wall the contribution of <CO 
is essentially zero. In other words, the high-Reynolds- 



Table I. A summary of the model constants proposed by 
various researchers 

Model G, CC CC,1 c’,, c,> 

Nagano and Kim [2 I] 1.8 0 0.72 2.2 0.8 
Jones and Musonge [26] 0 1.7 I .4 2.0 0.52 
Newman et ul. [27] 2.0 0 0 2.02 0.8X 
Elghobashi and 

Launder [28] 
Yoshizawa [29] 
Elghobashi and 

1.8 0 0 2.2 0.8 
1.2 0 0.52 1.2 0.52 

LaRue [3 l] 1.8 0 0.8 2.2 0.8 
Present 1.8 0 0.72 2.2 0.8 

number form of the equations is recovered correctly. 
Along the line of So et al.‘s [ 151 suggestion, the fol- 

lowing function, fi,,,,, = exp [ - (Rr,/80)']. is adopted. 

In summary, the final 0* and E,, equations for near- 

wall flows can be modeled as : 

Since ~~0 appears in both these equations, turbulent 
heat fluxes also have to be modeled. Again, gradient 
diffusion is assumed and -u,O = cr,(a@/?~~) is pro- 
posed. The normal heat flux ~8 is of order J?~ near a 
wall according to (13) and a@/$r is of order _I;“; 
therefore, the ordering of a, has to bc the same as CO. 
The model suggested by Nagano and Kim [2l] for a, 

is 

SI, = CJ;,k[k02m,,]' ' (20) 

where Ci = 0.11 and ,fj, is a near-wall function. The 
function proposed by Nagano and Kim [21] does not 
lead to a near-wall behavior of J13 for rt. If this 
behavior is to be recovered, then j; has to be of order 

J I_ ’ In the present study, a proposal for .f; satisfying 
this limiting behavior is made on the basis of Nagano 
and Kim’s [2l] suggestion, and is given by 

where C,, is taken to be 0.1 and A + = 30 as suggested 
in ref. [2l] are constants adopted for the present study. 
With this proposal, equations (I 8) and ( 19) are closed 
and can be solved together with a near-wall model for 
the velocity field. 

(23) 

a,, = :a:( 1 -ii,, Id,, +.I;.,, 
1; 

k 
[Iii, + up/&n, 

+u,u~n~n,+u,u~~n,,,n,n,n,ii[i +~wJw,:~~I (24) 

@p:: = @,, +@,,.,,/:., (25) 

E 
@!, = -(‘I k (u,u, - %,k) 

Finally, the model constants Cc,,, , CL,5 have to 
be chosen. The values proposed by various researchers 
are summarized in Table I. With the exception of 
Yoshizawa [29], most model constants arc determined 
by considering measurements obtained in decaying 
homogeneous scalar turbulence and temperature vari- 

@ il.” 
= c, ;(u,u,- $S,,k)- ~(u,u,n,~,+14lr,n,n,) 
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ante in grid turbulence. It can bc seen that. of all 
suggestions, the proposals of Elghobashi and Launder 
[28], Elghobashi and LaRue [3l] and Nagano and 
Kim [21] are essentially identical. Since Nagano and 
Kim [2l] have validated their constants against 

different types of high-Reynolds-number flows and 
good results arc obtained. the present study adopts 
their proposed values. 

NEAR-WALL REYNOLDS-STRESS MODEL 

The mean temperature equation, together with (18) 
and (19), cannot be solved without knowledge of the 
mean velocity field and turbulent momentum fluxes. 
These properties can be determined by solving the 

mean flow equations using an appropriate closure 
model. Since the near-wall Reynolds-stress model of 
Lai and So [20] yields accurate results for wall shear 
flows and their channel flow calculations compare 

favorably with direct simulation data [l-3] and 
measurements [32], their model is chosen for the 
present calculations of heat transfer in pipe and 
channel flows. For the sake of completeness, the 
model equations are also given below. 

The Reynolds-stress transport equations for incom- 

prcssible turbulent flows can be symbolically written 
as 

C,, = o:, + u:, + P,, + a; -c,, (22) 

where the terms from left to right represent convec- 
tion. molecular diffusion. turbulent diffusion. pro- 
duction by mean strain, velocity-pressure-gradient 
correlation and dissipation of u,u,. respectively. In 
(22). only the terms D:,. Qc and a,, need modeling. Lai 
and So [20] use Launder et al.‘s [33] high-Reynolds- 
number closure as the base model and proceed to 
modify it for near-wall flows. Their modifications for 
D:,. 0: and c,, can bc written as 
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where 

‘L, = - 
-au, _aq 
UiUk z +u,u, z , (274 

k k 

Wb) 

fin, = exp [ - (Re,/l50)“], and the model constants are 
given by c, = 1.5, c2 = 0.4, c, = 0.11 and c(* = 0.45. 
These constants are the same as those specified by Laun- 

der et al. [33] and Lai and So [20]. The convection and 
molecular diffusion terms in (22) are given by C,, = 
Dtr,uJDt and Q’, = ?[v Z~J~rJ?.u,, respectively. 

A transport equation valid all the way to the wall for 

the dissipation rate c: is required to complete closure. 
This equation is given by Lai and So [20] as 

where 

and the model constants, specified as c, = 0.15, c, , = 
1.35, (‘!? = 1.8. are taken from Launder ef ul. [33]. 
The damping functions are defined as j; = 1 -(2/g) 

exp (-(Rc~,/b)~j and ,f;,? = exp {( -Re,/64)‘). It can 
be seen from the proposed new models for F,, and 0: 
that as the flow moves away from a wall, ,f;,, quickly 
vanishes and the near-wall model of (22) reduces ex- 
actly to the high-Reynolds-number model of Launder 
Pf ul. [33]. 

RESULTS AND DISCUSSION 

The modeled equations (18) (19), (22) and (28) are 
solved with the mean momentum and temperature equa- 
tions. Boundary conditions are no slip at the wall for all 
velocities and turbulence properties except E which is 
given by 2v(aV/k/+)‘. The thermal boundary conditions 

are either constant wall heat flux or con- 
stant wall temperature. As for 0’ and cl), the wall bound- 
ary conditions are 6’ = 0 and Q, = c((~,/0’/ay)‘. 

The governing equations and associated boundary 
conditions are used to calculate heat transfer in fully- 
developed pipe and channel flows. Since the flow is 
fully developed. the equations can be reduced to 
ordinary differential equations and the Newton iter- 
ation scheme proposed in ref. [20] is used to numeri- 
cally solve the finite difference equations. Details 
of this technique can be found in refs. [ 13, 20, 231. 

Present calculations are evaluated against direct 
simulation data with constant wall temperature [4, 51 
and with constant wall heat flux [6] boundary con- 
ditions. The former study is carried out at Re, = 180, 
or Re = 6600, and a molecular Prandtl number 

Pr = 0.71. On the other hand, the study of Kasagi et 
al. [6] is carried out at Re, = 150, or Re = 4560, and 

the same Pr. Since the near-wall budgets for tem- 

perature variance and its dissipation rate and for heat 
fluxes are reported in ref. [6], detailed comparisons of 
the budgets are carried out for this case only. Besides, 
Kasagi et al. [6] show that there is very little difference 
in the near-wall budgets of the heat fluxes for both 
boundary conditions. Finally, the present calculations 
are also compared with the model predictions of refs. 

[21, 231. 
Since the velocity field properties have already been 

validated against simulation data [16, 201, the cal- 
culated properties compared here are limited to 0 + , _- 
HAS, atI+, uB+ , E:, Pr,, and the budgets of heat fluxes, 
temperature variance and its dissipation rate. All 
properties are plotted vs y+. From (1) and (13), the 
following expressions can be derived for Ok,, US+, 

u0+ , E: and UL'+ They are : 

N:,, = aHy++bHy+2+... (2% 

&H’ = a,“+h,Hy+ +,.. (29b) 
^_ 
uo+ = a~,y+3+b,,,y+4++” WC) 

uo+ = a,,y+*+buHy+3+“’ (294 

uc+ = a,,,y+3+b,,y+4+.... We) 

If these quantities are plotted in a log-log form, the 
slope of (29a) is 1, that of (29c) is 3 and that of (29d) 

is 2, while the intercepts at logy+ = 0 are aO, a,# and 
uuH, respectively. The value of a0 determined from ref. 

[6] is 0.262; however, no reliable values of uUO and u,,~ 
can be deduced from ref. [6]. On the other hand, the 
values of ao, c+, and a,, are quoted by Antonia and 
Kim [34] as 0.255, 4.795 x 10e4 and 8.642x lo--*, 
respectively, for the constant wall temperature case 
[3, 41. Furthermore, from (1) and (13), it can be 

deduced that uEO = (uo)*/Pr. In other words, (O,‘,,)‘/ 
E; y+ ’ = Pr identically. These limiting values can be 
used to assess the asymptotic behavior and internal 
consistency of the near-wall two-equation model for 
heat fluxes. 

The results for the constant wall heat flux case are 
presented in Figs. l-7. Mean temperature profiles are 
plotted in Fig. l(a). In the viscous sublayer, all cal- 
culated profiles agree well with the theoretical dis- 
tribution, O+ = Pry+. The agreement extends to 
y+ = 6 ; a result that is identical to the behavior shown 

in the simulation data [6]. Also, according to ref. 161, 
the von Karman constant for this flow is Q = 0.36 
determined in the range, 35 < y+ < 100. The von Kar- 
man constants determined in the same y+ range for 

the three models tested are 0.34 for ref. [21], 0.32 for 
ref. [23] and 0.47 for the present model. On the other 
hand, the effect of A+ on the calculated mean tem- 
perature profile can be assessed by carrying out 
another calculation assuming A+ = 38. This result is 
also plotted in Fig. l(a) for comparison. From this 
calculation, IC” = 0.40 is obtained. The under- 
prediction of K(! in the case of the models of refs. [21, 
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Fro. 1. Mean temperature comparison in semi-log plot for 
the constant wall heat Burt case: (a) channel flow; (b) pipe 

flow. 

231 is similar to the under-prediction of K, the von 
Karman constant for the mean velocity profile. 
According to ref. f16], Lai and So’s [ZO] prediction of 
K for the channel flows of refs. f I, 2] is 0.35 compared 
to a direct simulation value of 0.4. It seems that the 
constants in these models are not optimized to 
adequately reflect Reynolds number effects on mean 
flow behavior. The present calculations adopt the 
model constants specified by Nagano and Kim [21] 
but attempt to improve the near-wall modeled 
behavior. This modification gives rise to a much larger 
value for Q. However, as will be seen later, the modi- 
fication improves the near-wall predictions sig- 
nificantly and for the first time gives a model that is 
asylnptoticaIly correct as a wall is approached. Fur- 
thermore, Ai = 30 yields good results for high-Reyn- 
olds-number flows. This is evident in the calculations 
of fully-developed pipe flow heat transfer with con- 
stant wall heat flux at different Reynolds numbers, 
Re, which is defined in terms of pipe diameter and 
bulk mean velocity. The calculations are compared 
with measurements obtained at Re ranging from 
17 700 to 71200 f35] ; however, only the results for 
Re = 49 500 and 7 1 200 are plotted in Fig. 1 (b). Other 
comparisons are not shown because they display equal 
or better agreement with data for the Re range of 
17700-49500. Measurements yield a von Karman 
constant that varies with Re. The calculated K,, is 
in excellent agreement with data, as shown by all 
calculations carried out and the comparisons shown 
in Fig. l(b). In other words, the Reynolds number 
dependence of tig for the high Reynolds number range 

FrG 2. Comparison of root mean square temperature vari- 
ance for the constant wall heat flux case. 

is correctly predicted. If A+ = 38 is specified, the cal- 
culated results are not in good agreement with 
measurements. This, together with the fact that 
A’ = 38, would give rise to relatively poorer near- 
wall predictions and suggests that the correct constant 
to specify for A” is 30, in spite of an incorrect pre- 
diction of IC,, at RP = 4560. - --. 

The plots of O&, CO+ and &if are given in Figs. 2-- 
4. In Fig. 2, only two model calculations are shown: 
the present model and that of ref. [21] ; while in Fig. 
4, comparison is made with the model of ref. [23] only 
because the two-equation models cannot be used to 
calculate uB+ accurately. Therefore. their results are 
not compared with data. The plots of @G,, and ~0’ 
are given in log-log form so that the slopes of their 
variations with y” in the near-wail region can be 
determined with accuracy. it can be seen that the 
present model gives a slope of 1 for O,& (Fig. 2) and 
3 for z@+ (Fig. 3) which are in good agreement with 
simulation data. On the other hand, the slopes deter- 
mined from Nagano and Kim’s model are 1.2 and 5 
for Ok, and C, respectively. The present model 
yields CI# = 0.213 and u,, = 4.194 x 10 ‘. while the 
corresponding values determined from Nagano and 
Kim’s model are 0.095 and 5.002 x 10 ‘, respectively. 

FIG 3. Comparison of normal heat flux for the constant wall 
heat flux case. 
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FIG. 4. Comparison of stream component heat flux for the 
constant wall heat flux case. 

On the other hand, the simulation result gives uH as 

0.262. Therefore, these results show that the near- 
wall model of ref. [21] fails to reproduce the correct 
asymptotic behavior and is incorrect in its predictions 

of the limiting values for S:,, and ZIP. The arrH cal- 
culated by the model of ref. [23] is 2.687 x 10m4 and 
is about half that given by the present model. On the 
other hand, its predicted UP distribution agrees well 

with data, in particular the behavior near the wall 
(Fig. 4). Again, a slope of 2 is obtained for UP at the 
wall ; however, the calculated rzuH is smaller than the 
simulated value (Fig. 4). 

It should be pointed out that Nagano et al. [36]t 
have recently improved the model of Nagano and 
Kim [21] so that the predicted near-wall behavior is 
consistent with direct simulation data and exper- 

imental measurements. Their approach is different 
from that of ref. [21] and the present method in that 
a near-wall function geH is not proposed for (19) ; 
rather damping functions are introduced into the 
dissipation terms with C,, and C,, as coefficients to 

ensure proper near-wall behavior of the E# equation. 
They further propose to model the near-wall tur- 
bulence behavior correctly for both constant wall heat 
flux and constant wall temperature boundary con- 

ditions. This can be accomplished by defining ~1, with 
exponents for the velocity and thermal time scales 

diflerent from those given in (20). These exponents 
are detcrmincd by requiring the respective boundary 
conditions to be properly satisfied by the model. Their 
results give a near-wall behavior of W proportional 

to y+* for the constant wall heat flux boundary con- 

dition and Y a+3 for the constant wall temperature 
boundary condition. The corresponding behavior for 

(I& is constant and Y+ , respectively. Good compari- 
sons of mean properties are obtained with bound- 
ary-layer flows at fairly high Reynolds number; 

t The authors are grateful to one of the referees who 
brought this recent paper of Nagano et al. [36] to our atten- 
tion. We would like to thank the referee for his critical review 
of our paper. 

FIG. 5. Comparison of the dissipation rate of temperature 
variance for the constant wall heat flux case. 

however, there are no data available to verify the near- 

wall behavior of the constant wall heat flux case. Even 
though the present model assumes the fluctuating tem- 
perature to vanish at the wall for the constant wall 
heat flux boundary condition, its calculated near-wall 

behavior of 0& (Fig. 2) and UP (Fig. 3) is in good 
agreement with simulation data [6] but is not con- 

sistent with that predicted by Nagano et al. [36]. 
Therefore, further verifications with a wider range of 
data are required in order to establish the relative 
merits of each approach. 

Calculated distributions of 3 are shown in Fig. 5. 
The model of ref. [21] yields a distribution of E; that 
goes to zero at the wall. This is a consequence of 
the boundary condition imposed by the model. The 
present prediction is not in good agreement with data ; 
however, it yields a finite ai+ value at the wall. This 

wall value is given by e,+ = aEH = 0.0639 (Fig. 5). 
Therefore, based on the calculated a0 and ur,,, the 
limiting value of ((~~,)2/a~Y+2 is determined to be 
0.71, a value identically equal to the assumed Pr. A 

similar result can also be deduced from the model of 
Nagano et al. [36]. It is difficult to determine aaH 
from ref. [6]. However, if the assumption is made 
that the direct simulation data do indeed yield 
(6’ .)‘/a; y+ * = 0.71, the assumed Pr, then aso is cal- TnlS 
culated to be 0.097. The present model yields a value 
of 0.0639 for a,, (Fig. 5) and is substantially lower 
than the simulation value. According to the model of 
ref. [21], uLH = 0; therefore, its prediction of 

(Q,+,S) 2/czY+ 2 at the wall is infinite. This suggests that 

the model of ref. [21] is asymptotically incorrect. 
The budgets of temperature variance and its dis- 

sipation rate are shown in Figs. 6 and 7, respectively. 
Only the calculations from the present model and that 
of ref. [21] are compared in these figures. These two 
model calculations cannot provide budgets for the 
heat fluxes because their transport equations are not 
solved. On the other hand, the heat flux model pro- 
vides budgets for the heat fluxes and they have been 
analysed in ref. [23]. Therefore, their presentations 
are not repeated here. In general, the present model 
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gives a better prediction of the budgets of P/2 and 

q,. including the correct prediction of the illaximurn 
production of (1’12 and its location and the behavior 
of molecular diffusion in the region 0 < y+ < 25. 

The results for the constant wall temperature case 
are shown in Figs. 8-I 1. Again, the simulation data 
yield a von Karman constant q, = 0.36. The cal- 
culated profiles in the sublayer agree with O+ = Pry+ 
up to 4’ + = 6 (Fig. 8). However, the calculated Q, is 

0.37 for the model of ref. [Zl], 0.35 for the model of 
ref. [23] and 0.50 for the present model with A + = 30. 
If A+ = 38 is assumed, the calculated profile yields 
q, = 0.45, which is in better agreement with data com- 
pared to the A+ = 30 result (Fig. 8). The higher pre- 
diction of K@ for this case could be due to the fact that 
the model constants have not been properly optimized 
for low-Reynolds-number flows. 

The near-walf behavior of the thermal field is repro- 
duced correctly by the present model as shown by the 
comparisons of O&,, ~0’ and UP in Figs. 9-11. In a 
log-log plot, the slopes of HA,, and z@+ vs JI+ are 

determined to be I (Fig. 9) and 3 (Fig. IO), respec- 
tively, and are in good agrement with simulation data. 
The corresponding slopes calculated from the tnodel 

of ref. [21] are 1.2 and 5. As for u,, and a,,,, the values 

FIG. 8. Mean temperature comparison in semi-log plot for 
the constant wall temperature case. 
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FIG. 9. Comparison of root mean square temperature vari- 
ance for the constant wall temperature case. 

predicted by the present model are 0.203 and 
4.177 x IO-‘, respectively, while the corresponding 
values obtained from the model of ref. [21] are 0.086 
and 4.816 x lo- ‘. These compare with values of 0.255 
and 4.795 x 1O--4 reported by Antonia and Kim [34] 
for the data of refs. f4,5]. In view of these comparisons 
it can be said that the model of ref. [21] is also 
asymptotically incorrect for the constant wall tem- 
perature boundary condition. The values of (Q,J*/ 
,+ .+’ Q .P and a,,, are not reported in refs. [4, 5, 321. 
If it is assumed that (t?,&)*/~I:y-~~ is again given 
by 0.71, then u,,, can be dete~ined to be 0.092 for 
the direct simulation data of refs. [4, 51. As before, 
the present model under-predicts a,@, which is calcu- 
lated to be 0.058 (Fig. IO), but its prediction of 

((%I,) */GJ’+ * is still 0.71. These results are in excellent 
agreement with Nagano et al.‘s [36] predictions, which 
yield values of 0.054 and 0.71, respectively. Prediction 
of ufP by the model of ref. 1231 compares favorably 
with simulation data (Fig. 11). The slope is calculated 
to be 2 and aizs is determined as 6.1 x 10e2, which is 
smaller than the simulation value of 8.642 x 10--2. 
The calculated distributions of e$ are similar to the 
constant wall heat flux case and the model of ref. 
[21] again gives a zero wall value for st:, contrary to 

t 11) IW wm 
Y+ 

Fro. 10. Comparison of normal heat flux for the constant 
wall temperature case. 
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FIG. 11. Comparison of stream component heat flux for the 
constant wall temperature case. 

simulation data and present prediction. Once again, 
these comparisons indicate that the present model 
and that of ref. [23] behave correctly as a wall is 
approached. 

According to Antonia and Kim [34], who analyse 
the simulation data of refs. 14, 51 for their asymptotic 
near-wall behavior, Pv, at the wall is determined to be 
approximately 1.1. Since Pr, at the wall is given by 

p = 5 (ao+iay+) a,,. Pr 
5 ________. = __ 

vO+ (au+ taY+) a,,, 
(30) 

the correct prediction of Pr, depends on the calcu- 
lated values of au” and a%+,. The present model 
gives a,, = 0.20x lo-’ and a,@ = 0.418x 10e3, while 
the heat flux model yields a,,, = 0.20 x lo-’ and 
ace = 0.25 x 10e3 and the model of ref. [21] predicts 
au8 = 0.482 x lo- ‘. On the other hand, according to 
ref. [34], simulation data give au,, = 0.748 x lo- ’ and 
a,@ = 0.479 x 10e3. It can be seen that the present 
model predicts a,, with fair accuracy but is in error 
by a factor of 3.7 in the prediction of aUv. The model 
of ref. [23] predicts a,@ to be about half that of the 
simulation data. Consequently, the wall values of Pr, 
predicted by these two models are 0.34 and 0.57, 
respectively. On the other hand, the model of ref. [21] 
yields an aoB that is two orders of magnitude smaller. 
If the same a,, is assumed, then the model of ref. [Zl] 
yields a Pr, at the wall equal to 0.29 x 102, which is 
two orders of magnitude larger than simulation data. 
Since a,,. and a,,, are very small, numerical errors 
involved in their calculations are large. Consequently, 
numerical accuracy as well as near-wall modeling has 
an important effect on the prediction of Pr, at the 
wall. 

CONCLUSIONS 

A near-wall two-equation model for heat fluxes has 
been derived. The model is based on the transport 
equations for temperature variance and its dissipation 
rate. It is derived by modifying a conventional two- 
equation model for high-Reynolds-number flows and 
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by invoking a gradient transport assumption for the 
heat fluxes. All constants in the modeled high-Reyn- 
olds-number equations are adopted without change. 
Consequently, the near-wall modeled equations 

reduce exactly to the high-Reynolds-number equa- 
tions away from a wall. The near-wall corrections arc 
deduced by analyzing the terms in the exact equations 
and in the high-Reynolds-number modeled tem- 

perature variance and its dissipation rate equations. 
Near-wall imbalances of the different terms in these 

equations are evaluated and proposals are made to 

remedy the imbalance, at lcast up to first order of the 
normal coordinate. An eddy conductivity is proposed 
to relate turbulent heat fluxes to the mean temperature 

field. The proposed eddy conductivity involves both 
velocity and thermal time scales and behaves correctly 
near a wall. Therefore, the modeled normal heat flux 

approaches the wall in a manner identical to that of 
the exact behavior. A recently developed near-wall 

Reynolds-stress model is selected for use with the 
near-wall two-equation model to calculate fully- 
developed pipe and channel flows with constant wall 
heat flux and constant wall temperature boundary 
conditions. The calculations of these two cases are 

compared with direct simulation data [4-61 and with 
the predictions of the near-wall two-equation model 
of ref. [2l] and the near-wall heat flux model of 

ref. [23]. 
Results show that the present model is deficient in 

its predictions of mean temperature for the two low- 
Reynolds-number cases considered. It over-predicts 

the value of K~ substantially. However, the models of 
refs. [21. 231 calculate K(, with fair accuracy for both 
cases. This discrepancy can bc traced to the model 
constants used which. strictly speaking, are tuned for 
high-Reynolds-number flows. On the other hand, all 
three models tested give a correct prediction of the 
temperature profile in the viscous sublayer. As for the 

turbulence statistics, the present model and the model 
of ref. [23] yield correct asymptotic behavior at the 
wall for the temperature variance and its dissipation 

rate and the heat fluxes. and provide a fairly good 
estimate of their limiting wall values. In addition, the 

present model correctly predicts (0&S)2/~~_r1 ’ = 0.7 I. 
the assumed Pr, while the model of ref. [21] yields an 
infinite value for this parameter. In view of this, it 
can be concluded that the present model is internally 
consistent and asymptotically correct as a wall is 
approached but the model of ref. [21] is not. 
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